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LONG-TERM GOAL

Our long-term goal is to develop a model that is capable of predicting the low-frequency wave climate
on open coastal beaches given the offshore wind-wave climate and the underlying bathymetry.

OBJECTIVE

The objective of this project is to investigate how the various low-frequency, alongshore-propagating
waves are relatated to each other and to determine how they interact with one another.  This objective
constitutes the first step towards our long-term goal.

APPROACH

We derived a general formalism to compute the nonlinear interactions between coastally-trapped
gravity and vorticity waves.  To do so, we developed a spectral model describing the nonlinear
interactions between the free waves of the system by means of resonant interactions at second order.
To date the literature has identified the possibility of such resonances for the case of three edge waves
(Kenyon, 1970; Bowen, 1976) or three shear waves (Shrira et al., 1997).  To this list we add the
possibility of triads involving a single shear wave and two edge waves as illustrated in Figure 1.

WORK COMPLETED

We have completed the following tasks:

1) We derived the general equations that govern the eigenstructure of the free modes.
2) We derived the general equations that govern the nonlinear interactions among the various modes.
3) We developed numerical solutions to determine the eigenvalues and eigenfunctions of the free

modes over arbitrary bathymetries and longshore currents.
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4) We derived the general form of the triad interaction coefficients.
5) We are in the process of  preparing a research paper (Kirby et al.) which reports on the work carried

out under this project.

Figure 1:  Resonant triad interaction involving two edge waves and one shear wave.  The two
dashed lines indicate two edge waves with the same mode number and propagating in the same
direction as the shear wave that they are in resonance with.  The second intersection point (not

labelled) represents the resonance involving two counter-propagating edge waves and 
one shear wave.

RESULTS

We demonstrated that edge and shear waves are members of the same non-Sturm-Liouville eigenvalue
problem and that they have several features in common.  For example, they satisfy a common
orthogonality condition, have the same general expressions for phase speed and group velocity, etc.  As
mentioned earlier, we derived the general expressions (in terms of the eigenstructure) for the
interactions coefficients—we investigated the nonlinear energy transfer among the various modes by
using these general expressions and either analytical [for edge waves on planar beaches and over Ball’s
(1967) profile] or numerical solutions for the eigenstructure.  The results are discussed below.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

wavenumber

fr
eq

ue
nc

y

shear wave

edge wave

edge wave



We discuss the case of interacting edge wave triads first.  We found that the time scale of the energy
transfer (and hence the importance of the nonlinear interactions) is critically dependent on the
steepness of the bathymetry.  For relatively steep beaches, like those that are typical of pocket beaches
we have found that the time scale of the interaction is fairly short.  For example, on a beach with a
slope of 1/10 the time scale for the energy transfer is of order 10 wave periods (Figure 2).  This time
scale is similar to the time scale over which the edge waves are generated due to direct forcing by
modulated incident waves (Lippmann et al., 1997).  Hence the nonlinear energy transfers will play an
important role in the development of the low-frequency edge wave climate on steep beaches.

Figure 2:  The temporal evolution of modal amplitudes in an edge wave triad on a planar beach
(slope 1/10).  The smooth lines represent the solution from the spectral model developed here and

the jagged lines represent the predictions of a fully numerical calculation using the nonlinear
shallow-water equation solver of Özkan-Haller and Kirby (1997).  The three edge waves

participating in the triad are: Wave 1—mode 0, frequency ωωωω1, wavenumber λλλλ1; Wave 2—mode 0,
frequency ωωωω1/2, wavenumber -λλλλ1/4; Wave 3—mode , frequency 3ωωωω1/2, wavenumber 3λλλλ1/4.  ωωωω1

corresponds to a period (T1) of 20 s.

For flatter beaches (like those that may occur in typical open coastal situations) the time scale over
which the nonlinear energy transfer takes place is much longer—the time scale turns out to be inversely
proportional to the square of the beach slope.  Hence, for flat beaches, the nonlinear energy transfer
probably plays an insignificant role in the development of the low-frequency edge wave field.
Furthermore, the nonstationarity of wave climate over these time scales would make the detection of
the effects of the interaction very difficult, if not impossible, for such beaches.
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We came across a curious result that involves interacting edge wave triads on planar beaches in the
absense of longshore currents—cases involving colinear waves have zero interaction coefficients
indicating a total lack of interaction.  We have confirmed this result by direct numerical simulation but
have not found the reason for the non-interaction.  However, this result does not carry over to more
general bathymetries and for that reason we did not pursue this matter further.

The characteristics of the results involving the interaction of one shear wave and two edge waves are
similar to those that involve edge waves alone.  The time scales of the interactions lengthen with
decreasing beach slope and hence such interactions are probably unimportant on all but very steep
beaches.

We were particularly interested in the interaction of a shear wave and two edge waves on planar
beaches.  Our interest in this problem stemmed from the fact that stability calculations on the depth
profile at Leadbetter Beach (which is planar) show that the longshore currents are expected to be stable
over such profiles (Dodd et al., 1992).  Hence one would not expect to see shear waves over such
topographies.  However, the field data clearly shows the presence of shear waves.  A completely
satisfactory explanation to the observations of shear waves at Leadbetter beach has not been given so
far.  We wondered whether energy could be transferred into shear wave modes by their interaction with
two edge wave modes and thereby explain the shear wave observations.  We found that pathways for
such energy transfers exist but that the time scale is so large that it makes such an energy transfer
extremely inefficient.  This result was somewhat disappointing and the search for a convincing
explanation for shear wave observations on planar beaches continues.

IMPACT/APPLICATION

The finding that the time scales for nonlinear energy transfer are small on steep beaches indicates that
the low-frequency wave climate on steep beaches cannot be predicted without accounting for such
energy transfers.  The finding that the time scales are lengthy for flat beaches suggests that we may be
able to ignore the nonlinear energy transfers while predicting the low-frequency wave climate on open
coastal beaches.

TRANSITIONS

None.

RELATED PROJECTS

None.
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